Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38568082

RESUMO

A novel moderately halophilic, Gram-stain-negative and facultatively anaerobic bacterium, designated as strain TBZ242T, was isolated from water of Urmia Lake in the Azerbaijan region of Iran. The cells were found to be rod-shaped and motile by a single polar flagellum, producing circular and yellowish colonies. The strain could grow in the presence of 0.5-10 % (w/v) NaCl (optimum, 2.5-5 %). The temperature and pH ranges for growth were 15-45 °C (optimum 30 °C) and pH 7.0-11.0 (optimum pH 8.0) on marine agar. The 16S rRNA gene sequence analysis revealed that strain TBZ242T belonged to the genus Marinobacter, showing the highest similarities to Marinobacter algicola DG893T (98.8 %), Marinobacter vulgaris F01T (98.8 %), Marinobacter salarius R9SW1T (98.5 %), Marinobacter panjinensis PJ-16T (98.4 %), Marinobacter orientalis W62T (98.0 %) and Marinobacter denitrificans JB2H27T (98.0 %). The 16S rRNA and core-genome phylogenetic trees showed that strain TBZ242T formed a distinct branch, closely related to a subclade accommodating M. vulgaris, M. orientalis, M. panjinensis, M. denitrificans, M. algicola, M. salarius and M. iranensis, within the genus Marinobacter. Average nucleotide identity and digital DNA-DNA hybridization values between strain TBZ242T and the type strains of the related species of Marinobacter were ≤85.0 and 28.6 %, respectively, confirming that strain TBZ242T represents a distinct species. The major cellular fatty acids of strain TBZ242T were C16 : 0 and C16 : 1 ω7c/C16 : 1 ω6c and the quinone was ubiquinone Q-9. The genomic DNA G+C content of strain TBZ242T is 57.2 mol%. Based on phenotypic, chemotaxonomic and genomic data, strain TBZ242T represents a novel species within the genus Marinobacter, for which the name Marinobacter azerbaijanicus sp. nov. is proposed. The type strain is TBZ242T (= CECT 30649T = IBRC-M 11466T). Genomic fragment recruitment analysis showed that this species prefers aquatic saline environments with intermediate salinities, being detected on metagenomic databases of Lake Meyghan (Iran) with 5 and 18 % salinity, respectively.


Assuntos
Ácidos Graxos , Marinobacter , Irã (Geográfico) , Composição de Bases , Ácidos Graxos/química , Lagos , Marinobacter/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
2.
Curr Microbiol ; 81(6): 138, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609554

RESUMO

A Gram-stain-negative bacterium with a rod-to-ovoid shape, named strain M216T, was isolated from sand sediment from the coastal intertidal zone of Huludao, Liaoning Province, China. Growth was observed at 8-40 °C (optimal, 30 °C), pH 5.5-9.5 (optimal, pH 6.5) and 0.5-14.0% (w/v) NaCl (optimal, 6%). Strain M216T possessed ubiquinone-9 as its sole respiratory quinone and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified aminophosphoglycolipid, one unidentified aminophospholipid, two unidentified phosphoglycolipids, three unidentified phospholipids and three unidentified glycolipids as the main polar lipids. C12:0, C16:0, C12:0 3-OH, C16:1 ω9c, C18:1 ω9c and summed features 3 (C16:1 ω7c and/or C16:1 ω6c) were the major fatty acids (> 5%). The 16S rRNA gene sequence of strain M216T exhibited high similarity to those of 'Marinobacter arenosus' CAU 1620T and Marinobacter adhaerens HP15T (99.3% and 98.5%, respectively) and less than 98.5% similarity to those of the other type strains. The ANI and dDDH values between the strain M216T and 'Marinobacter arenosus' CAU 1620T were 87.4% and 33.3%, respectively; these values were the highest among the other type strains but lower than the species threshold. The G+C content of strain M216T was 58.3%. Genomic analysis revealed that strain M216T harbors the major CAZymes of GH13, GH23, GH73, and PL5, which are responsible for polysaccharide degradation and the potential ability to reduce nitrate to ammonia. Through phenotypic, genotypic, and chemotaxonomic analyses, we proposed the name Marinobacter albus sp. nov., a novel species in the genus Marinobacter, with its type strain M216T (= MCCC 1K08600T = KCTC 82894T).


Assuntos
Marinobacter , Marinobacter/genética , RNA Ribossômico 16S/genética , Areia , Amônia , China
3.
Artigo em Inglês | MEDLINE | ID: mdl-38289227

RESUMO

Three bacterial strains, namely LPB0304T, LPB0319T and LPB0142T, were isolated from coastal environments. The 16S rRNA gene sequences of the three isolates were found to show the highest sequence similarities to Massilia litorea (98.44 %), Marinobacter salinisoli (97.55 %) and Rhodobacter lacus (97.60 %), respectively. The low (<98.7 %) sequence similarities and tree topologies implied the novelty of the three isolates, representing novel genomic species of the genus Massilia, Marinobacter and Rhodobacter. Numerous biochemical and physiological features also supported the distinctiveness of the isolates from previously known species. Based on the phenotypic and phylogenetic data presented in this study, three novel species are suggested with the following names: Massilia litorea sp. nov. (LPB0304T=KACC 21523T=ATCC TSD-216T), Marinobacter salinisoli sp. nov. (LPB0319T=KACC 21522T=ATCC TSD-218T) and Rhodobacter xanthinilyticus sp. nov. (LPB0142T=KACC 18892T=JCM 31567T).


Assuntos
Marinobacter , Oxalobacteraceae , Marinobacter/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Rhodobacter
4.
Curr Microbiol ; 79(10): 294, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35989347

RESUMO

Haloalkophilic bacteria have a potential advantage as a bioremediation organism of high oil-polluted and industrial wastewater. In the current study, Haloalkaliphilic isolates were obtained from Hamralake, Wadi EL-Natrun, Egypt. The phenotype script, biochemical characters, and sequence analysis of bacterial-16S rRNA were used to identify the bacterial isolates; Halomonas HA1 and Marinobacter HA2. These strains required high concentrations of NaCl to ensure bacterial growth, especially Halomonas HA1 strain. Notably, both isolates can degrade phenol at optimal pH values, between 8 and 9, with the ability to grow in pH levels up to 11, like what was seen in the Halomonas HA1 strain. Moreover, both isolates represent two different mechanistic pathways for phenol degradation. Halomonas HA1 exploits the 1,2 phenol meta-cleavage pathway, while Marinobacter HA2 uses the 2,3 ortho-cleavage pathway as indicated by universal primers for 1,2 and 2,3 CTD genes. Interestingly, Marinobacter HA2 isolate eliminated the added phenol within an incubation period of 72 h, while the Halomonas HA1 isolate invested 96 h in degrading 84% of the same amount of phenol. Phylogenetic analysis of these 1,2 CTD (catechol dioxygenase) sequences clearly showed an evolutionary relationship between 1,2 dioxygenases of both Halomonadaceae and Pseudomonadaceae. In comparison, 2,3 CTD of Marinobacter HA2 shared the main domains of the closely related species. Furthermore, semi-quantitative RT-PCR analysis proved the constitutive expression pattern of both dioxygenase genes. These findings provide new isolates of Halomonas sp. and Marinobacter sp. that can degrade phenol at high salt and pH conditions via two independent mechanisms.


Assuntos
Dioxigenases , Halomonas , Marinobacter , Dioxigenases/genética , Dioxigenases/metabolismo , Marinobacter/genética , Fenol/metabolismo , Fenóis/metabolismo , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
5.
Environ Pollut ; 308: 119730, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809715

RESUMO

PAHs have been widely detected to accumulate in saline and hypersaline environments. Moderately halophilic microbes are considered the most suitable player for the elimination of PAHs in such environments. In this study, consortium 5H was enriched under 5% salinity and completely degraded phenanthrene in 5 days. By high-throughput sequencing, consortium 5H was identified as being mainly composed of Methylophaga, Marinobacter and Thalassospira. Combined with the investigation of intermediates and enzymatic activities, the degradation pathway of consortium 5H on phenanthrene was proposed. Consortium 5H was identified as having the ability to tolerate a wide range of salinities (1%-10%) and initial PAH concentrations (50 mg/L to 400 mg/L). It was also able to function under neutral to weak alkaline conditions (pH from 6 to 9) and the phytotoxicity of the produced intermediates showed no significant difference with distilled water. Furthermore, the metagenome of consortium 5H was measured and analyzed, which showed a great abundance of catabolic genes contained in consortium 5H. This study expanded the knowledge of PAH-degradation under hypersaline environments and consortium 5H was proposed to have good potential for the elimination of PAH pollution in saline/hypersaline environments.


Assuntos
Marinobacter , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Biodegradação Ambiental , Marinobacter/genética , Marinobacter/metabolismo , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Salinidade
6.
Environ Res ; 212(Pt A): 113176, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35364039

RESUMO

Sulfide generally exists in wastewater, black and odor river, as well as aquaculture water, and give rise to adverse effect on ecological stability and biological safety, due to the toxicity, corrosivity and malodor of sulfide. In the present study, a chemolithotrophic sulfide-oxidizing bacteria (SOB) was isolated and identified as Marinobacter maroccanus strain SDSWS8. And it produced no hemolysin and was susceptible to most antibiotics. There were no accumulation of sulfide, sulfate and thiosulfate during the sulfide removal process. The optimum conditions of sulfide removal were temperature 15-40 °C, initial pH value 4.5-9.5, salinity 10-40‰, C/N ratio 0-20 and sulfide concentration 25-150 mg/L. The key genes of sulfide oxidation, Sox system (soxB, soxX, soxA, soxZ, soxY, soxD, soxC), dissimilatory sulfur oxidation (dsrA, aprA and sat) and sqr, were successfully amplified and expressed, indicating the three pathways coordinated to complete the sulfide oxidation. Besides, strain SDSWS8 had inhibitory effect on four pathogen Vibrio (V. harveyi, V. parahaemolyticus, V. anguillarum and V. splendidus). Furthermore, efficient removal of sulfide from real aquaculture water and sludge mixture could be accomplished by strain SDSWS8. This study may provide a promising candidate strain for sulfide-rich water treatment.


Assuntos
Marinobacter , Bactérias/metabolismo , Marinobacter/genética , Marinobacter/metabolismo , Oxirredução , Sulfetos/toxicidade , Enxofre/metabolismo
7.
PLoS One ; 17(2): e0263420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196352

RESUMO

Marine microbial communities play an important role in biodegradation of subsurface plumes of oil that form after oil is accidentally released from a seafloor wellhead. The response of these mesopelagic microbial communities to the application of chemical dispersants following oil spills remains a debated topic. While there is evidence that contrasting results in some previous work may be due to differences in dosage between studies, the impacts of these differences on mesopelagic microbial community composition remains unconstrained. To answer this open question, we exposed a mesopelagic microbial community from the Gulf of Mexico to oil alone, three concentrations of oil dispersed with Corexit 9500, and three concentrations of Corexit 9500 alone over long periods of time. We analyzed changes in hydrocarbon chemistry, cell abundance, and microbial community composition at zero, three and six weeks. The lowest concentration of dispersed oil yielded hydrocarbon concentrations lower than oil alone and microbial community composition more similar to control seawater than any other treatments with oil or dispersant. Higher concentrations of dispersed oil resulted in higher concentrations of microbe-oil microaggregates and similar microbial composition to the oil alone treatment. The genus Colwellia was more abundant when exposed to multiple concentrations of dispersed oil, but not when exposed to dispersant alone. Conversely, the most abundant Marinobacter amplicon sequence variant (ASV) was not influenced by dispersant when oil was present and showed an inverse relationship to the summed abundance of Alcanivorax ASVs. As a whole, the data presented here show that the concentration of oil strongly impacts microbial community response, more so than the presence of dispersant, confirming the importance of the concentrations of both oil and dispersant in considering the design and interpretation of results for oil spill simulation experiments.


Assuntos
Lipídeos/farmacologia , Microbiota/efeitos dos fármacos , Microbiota/genética , Poluição por Petróleo/efeitos adversos , Água do Mar/química , Água do Mar/microbiologia , Alcanivoraceae/genética , Alteromonadaceae/genética , Biodegradação Ambiental/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Golfo do México , Hidrocarbonetos/metabolismo , Marinobacter/genética , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
8.
Arch Microbiol ; 204(2): 155, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35094174

RESUMO

A Gram-negative, rod-shaped, motile bacterium, designated strain CAU 1620T, was isolated from a tidal flat sediment in Incheon, Republic of Korea. Strain CAU 1620T grew optimally at 30 °C and pH 8.0 in the presence of 6.0% (w/v) NaCl. The results of 16S rRNA gene sequence analysis revealed that strain CAU 1620T showed the highest similarity to Marinobacter adhaerens DSM 23420T (98.5%), followed by Marinobacter algicola DSM 16394T (98.3%) and Marinobacter maroccanus LMG 30465T (98.2%). The average nucleotide identity and digital DNA-DNA hybridisation values between strain CAU 1620T and related strains were estimated as 75.6-78.1% and 19.5-20.9%, respectively. The DNA G + C content based on the draft genome sequence was 59.2%, and the major respiratory quinone was ubiquinone-9. The predominant cellular fatty acids were C12:0, C16:0, C18:1 ω9c, and C12:0 3OH. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. According to phenotypic, genotypic, and chemotaxonomic analyses, strain CAU 1620T represents a novel species of the genus Marinobacter, for which the name Marinobacter arenosus sp. nov. is proposed. The type strain is CAU 1620T (= KCTC 82431T = MCCC 1K06079T).


Assuntos
Marinobacter , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Marinobacter/genética , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
J Environ Manage ; 291: 112658, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934020

RESUMO

Wastewaters generated by fish processing are characterised by salt concentrations similar to or greater than that of seawater together with high nutrient concentrations (e.g. organic carbon and total nitrogen) due to the presence of blood, oil, and fish tissues. Fish processing wastewater entering rivers and oceans have become a key factor leading to the pollution of receiving waters; the adequate treatment of this wastewater is, therefore, crucial to a sustainable fish industry. The present study aimed to determine whether augmentation of fish wastewater with either Marinirhabdus sp., Marinobacter hydrocarbonoclasticus or a consortium of the two halobacteria, could successfully enhance the removal of both chemical oxygen demand (COD) and total nitrogen (TN) from fish wastewater. Following 9 days of incubation, the bioaugmentation treatment resulted in a significant reduction in COD, 88%, 91%, and 92% in fish wastewater augmented with either Marinirhabdus sp., Marinobacter hydrocarbonoclasticus respectively, or a consortium of the two halobacteria compared with the control (non-bioaugmented) treatment (77% removal). In tall bioaugmentation treatments (79-88%) TN removal was also significantly greater than the control treatment (57%). After 9 days of incubation, the COD and TN in bioaugmentation reached the European Union's (EU) wastewater discharge standard (Level B, COD < 120 mg L-1, TN < 70 mg L-1). The addition of monoculture was effective in enhancing the removal of COD, while co-culture significantly improved TN removal. Results of 16S rDNA sequence analysis investigating the survival of these introduced bacteria showed that only Marinobacter hydrocarbonoclasticus was detected at the end of the treatment, constituting 36% of the total bacterial population when added alone to the wastewater. This study confirms the effectiveness of bioaugmentation in removing COD and TN in saline fish wastewater. The ability of Marinobacter hydrocarbonclasticus to enhance the treatment and dominate the bacterial community suggests the commercial potential of this organism for bioaugmentation of aquaculture wastewater without the need for further bioaugmentation.


Assuntos
Marinobacter , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Marinobacter/genética , Nitrogênio , Eliminação de Resíduos Líquidos
10.
Antonie Van Leeuwenhoek ; 114(6): 765-775, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33751321

RESUMO

A facultatively anaerobic bacterium, strain W62T, was isolated from the marine solar saltern in Weihai, China. Cells of the novel strain were Gram-stain negative, non-flagellated, non-gliding, rod-shaped and around 0.3-0.5 × 2.5-3.9 µm in size. Optimum growth occurred at 33-37 °C, with 3-5% (w/v) NaCl and at pH 7.0-7.5. On the basis of phylogenetic analysis of the 16S rRNA gene sequence, strain W62T had close relationship with Marinobacter vulgaris F01T (98.6%), Marinobacter confluentis KCTC 42705T (98.4%) and Marinobacter halotolerans NBRC 110910T (97.7%). Genome sequencing revealed a genome size of 4,050,555 bp, a G+C content of 57.3% and a complete sox system related to thiosulfate oxidization. Strain W62T had ubiquinone-9 as the sole respiratory quinone and possessed Summed Features 3 (C16:1 ω7c/C16:1 ω6c), C16:0 and C18:1 ω9c as the major fatty acids. The major polar lipids of strain W62T were identified as aminophospholipid, phosphatidylglycerol and phosphatidylethanolamine. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain W62T should represent a novel specie of the genus Marinobacter, for which the name Marinobacter orientalis sp. nov. is proposed. The type strain is W62T (= MCCC 1H00317T = KCTC 62593T).


Assuntos
Marinobacter , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Marinobacter/genética , Oxirredução , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA , Tiossulfatos
11.
Curr Microbiol ; 78(3): 1045-1052, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33590298

RESUMO

A Gram-stain-negative, motile, aerobic, rod-shaped bacterium with flagella, designated M3-13T, was isolated from a saline soil in Zhoushan, China. According to phylogenetic analysis based on 16S rRNA gene sequences, strain M3-13T was assigned to the genus Marinobacter with highest 16S rRNA gene sequence similarity of 97.7% to Marinobacter maroccanus LMG 30466T, followed by Marinobacter sediminum R65 T (97.5%) and M. salsuginis SD-14BT (97.2%). Digital DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) were determined to evaluate the genomic relationship between strain M3-13T and M. maroccanus LMG 30466T. Digital DDH estimation (19.8%) as well as ANI (72.98%) proved the dissimilarity of strain M3-13T. Optimal growth of the strain M3-13T was at 28-30 °C and at pH 8.0-8.5, in the presence of 3-6% (w/v) NaCl. The major fatty acids detected in strain M3-13T were C16:1 ω7c/C16:1 ω6c, C16:0, C18:1ω7c/C18:1 ω6c and C12:03-OH, and the predominant respiratory quinone was ubiquinone-9. The major polar lipids included diphosphatidyglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminophosphoglycolipid and one unidentified phosphoglycolipid. The DNA G+C content was 56.6%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain M3-13T belongs to the genus Marinobacter. Based on the polyphasic taxonomic characterization, strain M3-13T is considered to represent a novel species of the genus Marinobacter, for which the name Marinobacter caseinlyticus sp. nov. is proposed (type strain M3-13T = MCCC 1K04560T = KCTC 72043T).


Assuntos
Marinobacter , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Marinobacter/genética , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA , Solo
12.
Bioelectrochemistry ; 137: 107644, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32971484

RESUMO

Bacterial extracellular electron transfer (EET) is envisioned for use in applied biotechnologies, necessitating electrochemical characterization of natural and engineered electroactive biofilms under conditions similar to the target application, including small-scale biosensing or biosynthesis platforms, which is often distinct from standard 100 mL-scale stirred-batch bioelectrochemical test platforms used in the laboratory. Here, we adapted an eight chamber, nanoliter volume (500 nL) electrochemical flow cell to grow biofilms of both natural (Biocathode MCL community, Marinobacter atlanticus, and Shewanella oneidensis MR1) or genetically modified (S. oneidensis ΔMtr and S. oneidensis ΔMtr + pLB2) electroactive bacteria on electrodes held at a constant potential. Maximum current density achieved by unmodified strains was similar between the nano- and milliliter-scale reactors. However, S. oneidensis biofilms engineered to activate EET upon exposure to 2,4-diacetylphloroglucinol (DAPG) produced current at wild-type levels in the stirred-batch reactor, but not in the nanoliter flow cell. We hypothesize this was due to differences in mass transport of DAPG, naturally-produced soluble redox mediators, and oxygen between the two reactor types. Results presented here demonstrate, for the first time, nanoliter scale chronoamperometry and cyclic voltammetry of a range of electroactive bacteria in a three-electrode reactor system towards development of miniaturized, and potentially high throughput, bioelectrochemical platforms.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Técnicas Eletroquímicas/métodos , Marinobacter/metabolismo , Nanotecnologia/instrumentação , Shewanella/metabolismo , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Eletrodos , Transporte de Elétrons , Genes Bacterianos , Limite de Detecção , Marinobacter/genética , Marinobacter/crescimento & desenvolvimento , Shewanella/genética , Shewanella/crescimento & desenvolvimento
13.
Nat Commun ; 11(1): 4658, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938931

RESUMO

Dimethylsulfoniopropionate (DMSP) is an important marine osmolyte. Aphotic environments are only recently being considered as potential contributors to global DMSP production. Here, our Mariana Trench study reveals a typical seawater DMSP/dimethylsulfide (DMS) profile, with highest concentrations in the euphotic zone and decreased but consistent levels below. The genetic potential for bacterial DMSP synthesis via the dsyB gene and its transcription is greater in the deep ocean, and is highest in the sediment.s DMSP catabolic potential is present throughout the trench waters, but is less prominent below 8000 m, perhaps indicating a preference to store DMSP in the deep for stress protection. Deep ocean bacterial isolates show enhanced DMSP production under increased hydrostatic pressure. Furthermore, bacterial dsyB mutants are less tolerant of deep ocean pressures than wild-type strains. Thus, we propose a physiological function for DMSP in hydrostatic pressure protection, and that bacteria are key DMSP producers in deep seawater and sediment.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo , Bactérias/isolamento & purificação , Clorofila A/análise , Clorofila A/metabolismo , Genes Bacterianos , Sedimentos Geológicos/química , Pressão Hidrostática , Marinobacter/genética , Marinobacter/isolamento & purificação , Marinobacter/metabolismo , Metagenoma , Mutação , Oceanos e Mares , Prochlorococcus/genética , Prochlorococcus/isolamento & purificação , Prochlorococcus/metabolismo , RNA Ribossômico 16S , Sulfetos/análise , Sulfetos/metabolismo , Compostos de Sulfônio/análise , Synechococcus/genética , Synechococcus/isolamento & purificação , Synechococcus/metabolismo
14.
Lipids ; 55(5): 479-494, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434279

RESUMO

Wax esters (WE) belong to the class of neutral lipids. They are formed by an esterification of a fatty alcohol and an activated fatty acid. Dependent on the chain length and desaturation degree of the fatty acid and the fatty alcohol moiety, WE can have diverse physicochemical properties. WE derived from monounsaturated long-chain acyl moieties are of industrial interest due to their very good lubrication properties. Whereas WE were obtained in the past from spermaceti organs of the sperm whale, industrial WE are nowadays mostly produced chemically from fossil fuels. In order to produce WE more sustainably, attempts to produce industrial WE in transgenic plants are steadily increasing. To achieve this, different combinations of WE producing enzymes are expressed in developing Arabidopsis thaliana or Camelina sativa seeds. Here we report the identification and characterization of a fifth wax synthase from the organism Marinobacter aquaeolei VT8, MaWSD5. It belongs to the class of bifunctional wax synthase/acyl-CoA:diacylglycerol O-acyltransferases (WSD). The protein was purified to homogeneity. In vivo and in vitro substrate analyses revealed that MaWSD5 is able to synthesize WE but no triacylglycerols. The protein produces WE from saturated and monounsaturated mid- and long-chain substrates. Arabidopsis thaliana seeds expressing a fatty acid reductase from Marinobacter aquaeolei VT8 and MaWSD5 produce WE. Main WE synthesized are 20:1/18:1 and 20:1/20:1. This makes MaWSD5 a suitable candidate for industrial WE production in planta.


Assuntos
Acil Coenzima A/metabolismo , Aciltransferases/genética , Glicolipídeos/metabolismo , Marinobacter/enzimologia , Acil Coenzima A/genética , Aciltransferases/química , Aciltransferases/isolamento & purificação , Ésteres/metabolismo , Glicolipídeos/genética , Marinobacter/genética , Especificidade por Substrato , Ceras/metabolismo
15.
Microbiologyopen ; 9(4): e1001, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32087608

RESUMO

Heterologous production of extracellular polyhydroxybutyrate (PHB) depolymerases (PhaZs) has been of interest for over 30 years, but implementation is sometimes difficult and can limit the scope of research. With the constant development of tools to improve recombinant protein production in Escherichia coli, we propose a method that takes characteristics of PhaZs from different bacterial strains into account. Recombinant His-tagged versions of PhaZs (rPhaZ) from Comamonas testosteroni 31A, Cupriavidus sp. T1, Marinobacter algicola DG893, Pseudomonas stutzeri, and Ralstonia sp. were successfully produced with varying expression, solubility, and purity levels. PhaZs from C. testosteroni and P. stutzeri were more amenable to heterologous expression in all aspects; however, using the E. coli Rosetta-gami B(DE3) expression strain and establishing optimal conditions for expression and purification (variation of IPTG concentration and use of size exclusion columns) helped circumvent low expression and purity for the other PhaZs. Degradation activity of the rPhaZs was compared using a simple PHB plate-based method, adapted to test for various pH and temperatures. rPhaZ from M. algicola presented the highest activity at 15°C, and rPhaZs from Cupriavidus sp. T1 and Ralstonia sp. had the highest activity at pH 5.4. The methods proposed herein can be used to test the production of soluble recombinant PhaZs and to perform preliminary evaluation for applications that require PHB degradation.


Assuntos
Bactérias/enzimologia , Hidrolases de Éster Carboxílico/genética , Bactérias/genética , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Comamonas testosteroni/enzimologia , Comamonas testosteroni/genética , Comamonas testosteroni/metabolismo , Cupriavidus/enzimologia , Cupriavidus/genética , Cupriavidus/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Marinobacter/enzimologia , Marinobacter/genética , Marinobacter/metabolismo , Pseudomonas stutzeri/enzimologia , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Ralstonia/enzimologia , Ralstonia/genética , Ralstonia/metabolismo , Proteínas Recombinantes/genética
16.
J Hazard Mater ; 384: 121387, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31648897

RESUMO

In this study, Marinobacter sp. N4 isolated from the halophilic consortium CY-1 was found to degrade phenanthrene as a sole carbon source with the accumulation of 1-Hydroxy-2-naphthoic acid (1H2N). With the assistance of Halomonas sp. G29, phenanthrene could be completely mineralized. The hpah1 and hpah2 gene cluster was amplified from the genome of strain N4, that were responsible for upstream and downstream of PAH degradation. Strain N4 was predicted for the transformation from phenanthrene to 1H2N, and strain G29 could transform the produced 1H2N into 1,2-dihydroxynaphthalene (1,2-DHN). The produced 1,2-DHN could be further transformed into salicylic acid (SALA) by strain N4. SALA could be catalyzed into catechol by strain G29 and further utilized by strains N4 and G29 via the catechol 2,3-dioxygenase pathway and catechol 1,2-dioxygenase pathway, respectively. NahG, encoding salicylate hydroxylase, was absent from the hpah2 gene cluster and predicted to be the reason for 1H2N accumulation in the PAH-degrading process by pure culture of strain N4. The syntrophic interaction mode among Marinobacter and other microbes was also predicted. According to our knowledge, this is the first report of the PAH-degrading gene cluster in Marinobacter and the syntrophic interaction between Marinobacter and other microbes in the PAH-degrading process.


Assuntos
Poluentes Ambientais/metabolismo , Genes Bacterianos , Marinobacter/metabolismo , Oxigenases de Função Mista/genética , Fenantrenos/metabolismo , Biodegradação Ambiental , Halomonas/genética , Halomonas/metabolismo , Marinobacter/genética , Família Multigênica
17.
Arch Microbiol ; 202(3): 657-663, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31760456

RESUMO

Studies on Pseudomonas nautica Baumann et al. 1972 (Approved Lists 1980) and Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 have shown that they should be treated as heterotypic synonyms. As a consequence, they have been treated as belonging to a single species, Marinobacter hydrocarbonoclasticus Gauthier et al. 1992. This interpretation of the International Code of Nomenclature of Bacteria/Prokaryotes is, however, based on a fundamental flaw in the interpretation of the wording of Rule 15 as documented in the 1975 and 1990 revisions where the wording has been partially corrected in the 2008 revision. A key aspect of the incorrect interpretation is that the nomenclatural type of a taxon, in this case Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 (the nomenclatural type of the Marinobacter Gauthier et al. 1992) must be used instead of recognising the priority of the epithet in Pseudomonas nautica Baumann et al. 1972 (Approved Lists 1980), with the creation of a new combination Marinobacter nauticus (Baumann et al. 1972). It is now clear that there is no justification for that interpretation and it is necessary to create a new combination, Marinobacter nauticus (Baumann et al. 1972) in the situation where Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Pseudomonas nautica Baumann et al. 1972 (Approved Lists 1980) are treated as heterotypic synonyms. Additional studies have shown that Marinobacter aquaeolei Nguyen et al. 1993 and Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 should also be treated as heterotypic synonyms.


Assuntos
Marinobacter/classificação , Processos Heterotróficos , Marinobacter/genética , Marinobacter/isolamento & purificação , Marinobacter/metabolismo , Filogenia , Terminologia como Assunto
18.
PLoS One ; 14(7): e0220045, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31335890

RESUMO

Bacterial adhesins attach their hosts to surfaces through one or more ligand-binding domains. In RTX adhesins, which are localized to the outer membrane of many Gram-negative bacteria via the type I secretion system, we see several examples of a putative sugar-binding domain. Here we have recombinantly expressed one such ~20-kDa domain from the ~340-kDa adhesin found in Marinobacter hydrocarbonoclasticus, an oil-degrading bacterium. The sugar-binding domain was purified from E. coli with a yield of 100 mg/L of culture. Circular dichroism analysis showed that the protein was rich in beta-structure, was moderately heat resistant, and required Ca2+ for proper folding. A crystal structure was obtained in Ca2+ at 1.2-Å resolution, which showed the presence of three Ca2+ ions, two of which were needed for structural integrity and one for binding sugars. Glucose was soaked into the crystal, where it bound to the sugar's two vicinal hydroxyl groups attached to the first and second (C1 and C2) carbons in the pyranose ring. This attraction to glucose caused the protein to bind certain polysaccharide-based column matrices and was used in a simple competitive binding assay to assess the relative affinity of sugars for the protein's ligand-binding site. Fucose, glucose and N-acetylglucosamine bound most tightly, and N-acetylgalactosamine hardly bound at all. Isothermal titration calorimetry was used to determine specific binding affinities, which lie in the 100-µM range. Glycan arrays were tested to expand the range of ligand sugars assayed, and showed that MhPA14 bound preferentially to branched polymers containing terminal sugars highlighted as strong binders in the competitive binding assay. Some of these binders have vicinal hydroxyl groups attached to the C3 and C4 carbons that are sterically equivalent to those presented by the C1 and C2 carbons of glucose.


Assuntos
Adesinas de Escherichia coli/química , Fucose/metabolismo , Glucose/metabolismo , Marinobacter/química , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Adesinas de Escherichia coli/genética , Adesinas de Escherichia coli/metabolismo , Sítios de Ligação , Cálcio/química , Fucose/química , Glucose/química , Marinobacter/genética , Conformação Proteica em Folha beta , Especificidade por Substrato
19.
Int J Biol Macromol ; 133: 1288-1298, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31055112

RESUMO

A report on the de novo Whole Genome Sequence (WGS) of Marinobacter litoralis SW-45, a moderately salt-tolerant bacterium isolated from the seawater in Malaysia is presented. The strain has a genome size of 3.45 Mb and is capable of producing halophilic lipase, protease and esterase enzymes. Computational prediction of non-coding RNA (ncRNA) genes in M. litoralis SW-45 was performed using standalone software known as the non-coding RNA characterization (nocoRNAc). In addition, a phylogenetic tree showing the evolutionary relationship between the strain and other members of the genus Marinobacter was constructed using 16SrRNA sequence information. A total of 385 ncRNA transcripts, 1124 terminator region, and 2350 Stress Induced Duplex Destabilization sites were predicted. The current WGS shotgun project has provided the relevant genetic information that may be useful for the strain's improvement studies. This manuscript gives the first description of M. litoralis with a complete genome.


Assuntos
Marinobacter/genética , RNA não Traduzido/genética , Sequenciamento Completo do Genoma , Evolução Molecular , Filogenia , RNA Ribossômico 16S/genética
20.
Mar Pollut Bull ; 141: 398-403, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30955749

RESUMO

The beaches of Goa state in India are frequently polluted with tarballs, specifically during pre-monsoon and monsoon seasons. Tarballs contain hydrocarbons, including polycyclic aromatic hydrocarbons, which pose significant environmental risks. Microbes associated with tarballs reportedly possess capabilities to degrade toxic hydrocarbons present in tarballs. In this study, bacterial diversity associated with tarballs from Vagator and Morjim beaches of north Goa was analysed based on V3-V4 regions of 16S rRNA gene sequenced using Illumina Miseq Platform. The Proteobacterial members were dominant in both Vagator (≥85.5%) and Morjim (≥94.0%) samples. Many of the identified taxa have been previously reported as hydrocarbon degraders (e.g. Halomonas, Marinobacter) or possible human pathogens (e.g. Acinetobacter, Klebsiella, Rhodococcus, Staphylococcus, Vibrio). This is the first study reported on a metagenomic analysis of bacteria associated with tarballs from Goa.


Assuntos
Monitoramento Ambiental/métodos , Metagenoma/genética , Microbiota/genética , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Humanos , Índia , Marinobacter/genética , Marinobacter/isolamento & purificação , Metagenômica , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...